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Spinodal Decomposition for Multicomponent
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We consider the initial-stage phase separation process in multicomponent Cahn�
Hilliard systems through spinodal decomposition. Relying on recent work of
Maier-Paape and Wanner, we establish the existence of certain dominating sub-
spaces determining the behavior of most solutions originating near a spatially
homogeneous state. It turns out that, depending on the initial concentrations of
the alloy components, several distinct phenomena can be observed. For ternary
alloys we observe the following two phenomena: If the initial concentrations of
the three components are almost equal, the dominating subspace consists of two
copies of the finite-dimensional dominating subspace from the binary alloy case.
For all other initial concentrations, only one copy of the binary dominating sub-
space determines the behavior. Thus, in the latter case we observe a strong mutual
coupling of the concentrations in the alloy during the initial separation process.

KEY WORDS: Multicomponent Cahn�Hilliard equation; spinodal decom-
position; multicomponent alloys.

1. INTRODUCTION

Forty years ago J. W. Cahn and J. E. Hilliard(3, 4) introduced the partial
differential equation

ut= &2(=22u+ f (u)) in 0
(1)�u

�&
=

�2u
�&

=0 on �0
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to model phase separation of a binary alloy contained in a closed vessel
0/Rn, where n # [1, 2, 3]. Their studies were motivated by a phenomenon
called spinodal decomposition: If a high-temperature homogeneous mixture
of two metals is quenched to a certain lower temperature, a sudden phase
separation process may set in. The mixture quickly becomes inhomoge-
neous, forming a fine-grained structure which more or less alternates in
properties between the two components. In two and three dimensions,
these structures exhibit a complex, irregular geometry, yet with some com-
mon characteristic wavelength. This characteristic wavelength appears to
be proportional to the small parameter = in (1) which models interaction
length. Subsequently, a coarsening process can be observed, for which the
patterns generated by spinodal decomposition serve as initial conditions.
For more details on this coarsening process for binary as well as multicom-
ponent alloys we refer the reader to Alikakos, Bates, Chen, (1) Bronsard,
Garcke, Stoth, (2) Kalies, VanderVorst, Wanner, (12) Pego, (16) Stoth, (19) and
the references therein.

Although spinodal decomposition has drawn considerable interest in
the physics community, mathematical treatments of the phenomenon
appeared only recently. The first results are due to Grant, (9) who considers
the case of one-dimensional domains 0. Maier-Paape and Wanner(13, 14)

explain the early stages of spinodal decomposition for general domains 0,
including the geometries and characteristic wavelengths observed in experi-
ments. Only recently, progress has been made in explaining the subsequent
stages of spinodal decomposition. See Sander and Wanner.(17, 18) However,
all of these results exclusively consider the scalar-valued Cahn�Hilliard
equation (1), i.e., only binary alloys.

Nonetheless, experimental evidence shows that spinodal decomposi-
tion can also be observed in multicomponent alloys. Similar to the binary
case, a (almost completely) homogeneous mixture of N�3 components
will quickly separate into a complex structure with some characteristic
wavelength. In order to describe this phenomenon, Morral and Cahn(15)

introduced a system of partial differential equations which will be described
in more detail in the following (see also Hoyt(10, 11)). Morral and Cahn also
provided a heuristic explanation for the decomposition process by discuss-
ing the linearized dynamics. More recently, Eyre(7, 8) performed numerical
simulations to shed more light onto multicomponent spinodal decomposi-
tion. He observes that the first decomposition stage behaves very similar to
the binary case, and consequently refers to the obtained structure as
pseudo-binary. To the best of our knowledge, there does not exist any
rigorous mathematical explanation for this.

In the following, we will provide such an explanation for the early
stages of the decomposition process. This is done by carrying over the
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results of Maier-Paape and Wanner(13, 14) to the multicomponent case. In
the course of this, we will not only explain the occurrence of the pseudo-
binary as observed by Eyre, but also characterize in detail when the
pseudo-binary does not appear. These two different phenomena are described
at the end of the introduction in Theorems 1.3 and 1.2, respectively.

Consider an alloy consisting of N�3 components which is contained
in some closed vessel 0/Rn, where n # [1, 2, 3]. Let ui (t, x) # [0, 1],
i=1,..., N, denote the concentration of the i th component at time t and
location x # 0. Then we have

:
N

i=1

ui (t, x)=1 for all t�0 and x # 0

i.e., the values of the vector u=(u1 ,..., uN ) describing the composition of
the alloy are contained in the Gibbs simplex G defined by

G :={v # RN : :
N

i=1

vi=1, vi�0, i=1,..., N=
With every state u # H1(0, RN) of the alloy one can associate an energy
E=[u] given by

E=[u] :=|
0 \

=2

2
} :

N

i=1

|{ui |
2+W(u)+ dx (2)

Since the parameter =>0 models interaction length, it is considered to be
small. The nonlinear function W: G/RN � R represents the Gibbs free
energy, one standard example being

W(u1 ,..., uN)=_ } :
i< j

u i uj+ :
N

i=1

ui ln ui (3)

Similar to the binary case we can use (2) to derive gradient dynamics for
the concentration vector u(t, x) which conserves the total mass, i.e., for
which

1
|0|

} |
0

ui (t, x) dx=u� i for all t�0 and i=1,..., N (4)

Define e=(1,..., 1) # RN, and let P: RN � e= denote the orthogonal projec-
tion onto e=, i.e., let Pu=u&(u, e)�N } e. Setting

f (u) := &PDuW(u) : G/RN � e= (5)
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the dynamical law associated with (2) is given by the multicomponent
Cahn�Hilliard system

ut= &2(=2 2u+ f (u)) in 0

�u
�&

=
�2u
�&

=0 on �0 (6)

u # G/RN

For more information we refer the reader to Morral and Cahn, (15)

Hoyt, (10, 11) and Eyre.(7, 8) An existence and uniqueness result for solutions
of (6) can be found in Elliott and Luckhaus. (6)

In the rest of this introduction we want to state two theorems concern-
ing the dominance of certain subspaces in the spinodal decomposition pro-
cess. These subspaces are related to the linearized equations of (6). For
fixed u� # G denote the matrix B=Bu� :=&PD2

uW(u� ) # L(RN, RN ). Notice
that im(B)/e=. Then the linearization of (6) at u#u� is

vt=&2(=2 2v+Bv) in 0

�v
�&

=
�2v
�&

=0 on �0 (7)

(v, e)=0

We try to find solutions of (7) of the form v(t, x)=e*t } w } �(x), where
w # e=/RN is an eigenvector of B and � is an eigenfunction of the negative
Laplace operator. To be more precise, we use the following notation.

Notation 1.1. We denote by �i , i # N, the complete L2(0)-ortho-
normal set of eigenfunctions of the scalar-valued negative Laplace operator
&2 in L2(0) & [v: �0 v dx=0], subject to homogeneous Neumann bound-
ary conditions. The corresponding eigenvalues are denoted by 0<}1�
}2�}3� } } } � +�.

The RN-orthonormal eigenvectors of B| e= are denoted by w1 ,..., wN&1

# e= with corresponding real eigenvalues ;1�;2� } } } �;N&1 .

Notice that the eigenvalues ;k are real due to the symmetry of B| e= #
L(e=, e=). For further reference, we state the following identity for the
asymptotic distribution of the eigenvalues }i (cf. ref. 5 or 14, Lemma 3.1).
For this, let Nn(+) denote the number of eigenvalues } i of &2 (subject to
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Fig. 1. The eigenvalues *� i, k, =

Neumann boundary conditions) less than + # R (counting multiplicities),
then

lim
+ � �

Nn(+)
+n�2 =cn |0| (8)

with a positive constant cn depending only on n=dim 0.
Using the above notation, the eigenvalues of A=u :=&2(=2 2u+Bu),

which is the right-hand side of the first equation in (7), are given by

*� i, k, = :=}i (;k&=2}i ), i # N, 1�k�N&1 (9)

with corresponding eigenfunctions wk } �i (x) (see Fig. 1). Observe that all
eigenvalues are bounded above by *max

= :=;2
1 �(4=2).

We want to assume that the equilibrium u#u� is unstable, i.e., that
;1>0. It then seems intuitively plausible that the eigenfunctions with
eigenvalues *� i, k, = close to *max

= will contribute more to the spatial pattern
formation of solutions originating near u� than the remaining eigenfunc-
tions. Therefore we define

Y+
= :=span[wk } �i : *� i, k, =�c+ } *max

= ] (10)
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as a reasonable candidate for a dominating subspace, where 0<<c+<1 is
a fixed constant. Let }max

= :=;1 �(2=2) denote the point at which *max
= is

attained. Then the eigenfunctions �i of &2 such that wk } �i is contained
in Y+

= for some k are all elements of

Y +
= :=span {�i :

} i

}max
=

# [1&$, 1+$]= (11)

where 0<$<<1 depends on c+<1. In fact, Y +
= is the dominating sub-

space for the binary Cahn�Hilliard model. See refs. 13 and 14. The
elements of Y +

= exhibit a common characteristic wavelength of order O(=)
as = � 0 (cf. ref. 13, Section 4). Leaving out technical details, this can be
described as follows.

Let x0 # 0 be a ``typical'' point for a given element � in Y +
= . Then

for any ball with radius r and center x0 which is completely con-
tained in a nodal domain of �, the estimate r�C } = holds with an
=-independent constant C.

This wavelength estimate canonically remains valid for each component of
the elements in Y+

= , since

Y+
= /w1Y +

= �w2Y +
= � } } } �w i*Y +

=

for some i* # [1,..., N&1]. The index i* can be determined from c+<1.
See for example Fig. 1, where i*=2. Notice that in general we have
i*<N&1, since some of the branches Ck, ==[*� i, k, = : i # N] may lie com-
pletely below c+ } *max

= , as shown in Fig. 1.
The goal of Section 2 is to state and prove a precise formulation of

the following: The local evolution near the equilibrium u#u� of (6) is
dominated by the finite-dimensional space Y+

= . Loosely speaking, we can
prove that most solutions of (6) originating near u#u� will initially stay
close to u� +Y+

= . This is presented as an application of the abstract theory
developed in Section 2 of ref. 14, which originally aimed only at describing
the early stages of spinodal decomposition for the binary alloy case.
Although our resulting main Theorem 2.9 for the multicomponent case is
stated at the end of Section 2 in detail, we briefly formulate the two main
consequences concerning the dominance of Y+

= here. (Notice that in
Theorem 2.9 the space Y+

= has to be split up for technical reasons which
will become clear later on, i.e., we have Y+

= =X +
= �X ++

= .) These results
will make clear that depending on the eigenvalues ;k , there are two
fundamentally different possibilities for the structure of the dominating
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subspace Y+
= ��one corresponding to the pseudo-binary decomposition

described by Eyre, (7, 8) the other one to the absence of this strong coupling
between the components of the alloy. We begin with the latter phenomenon.

Theorem 1.2. Let ;1=;2= } } } =;i*>>;i*+1� } } } �;N&1 denote
the eigenvalues of B for the linearization of the multicomponent Cahn�
Hilliard system (6) at the unstable homogeneous equilibrium u#u� # G.
Then on a neighborhood of u#u� with size proportional to =dim 0 as = � 0,
the subspace Y+

= dominates the behavior of all solutions of (6) originating
near u#u� in a way which is made precise in Theorem 2.9. The space Y+

=

is contained in w1Y +
= � } } } �wi*Y +

= . Thus, each component of Y+
=

exhibits a characteristic wavelength of the order O(=).

Let us mention that the size of the neighborhood, on which the above
theorem holds, depends on c+<1. However, once c+ has been fixed, the
size is proportional to =n, where n=dim 0. Unfortunately, in the limit
c+ � 1 one does not obtain an =n dependence of the size. This is the reason
why in general one cannot neglect the eigenfunctions corresponding to
;2 ,..., ;i* , even in the case ;1>;2 . Therefore, as long as ;1r;2r } } } r

;i*>>;i*+1 , the above theorem cannot be improved.
If on the other hand ;1>>;2 , we do observe a strong mutual coupling

of the components. More precisely, we have the following result concerning
the structure of the dominating subspace Y+

= , which is responsible for the
occurrence of pseudo-binary decomposition.

Theorem 1.3. Suppose the eigenvalues of B satisfy ;1>>;2� } } }
�;N&1 . Then on a neighborhood of the unstable equilibrium u#u� with
size proportional to =dim 0 the subspace Y+

= /w1 Y +
= is dominant. In other

words, all components of the elements of Y+
= are constant multiples of

each other. Functions of this form are called pseudo-binary.

According to our central Theorem 2.9, spinodally decomposed states
will with high probability approach an element in u� +Y+

= . Therefore, in the
situation of the last theorem the observed states exhibit pseudo-binary
behavior with a strong mutual coupling between the components. On the
other hand, if ;1r;2 , then Theorem 1.2 suggests that there is no longer
such a strong coupling, but all components still exhibit the same wave-
length. We want to point out that both of these phenomena match the
observations made in experiments and in numerical simulations. See for
example refs. 7 and 8. Moreover, we believe that our results may be used
to determine the relevant parameters =, ;1 , and i* from real data. An algo-
rithm and tests how these parameters can be retrieved from numerical data
are currently being worked out.
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In Section 3 we discuss the implications of the above Theorems 1.2
and 1.3 for the standard example W which is defined in (3). We will identify
the regions in G where Theorem 1.2 or Theorem 1.3 holds, i.e., where
;1>>;2 or ;1r;2 , respectively.

2. SPINODAL DECOMPOSITION

In the following the abstract results of Section 2 in ref. 14 are applied
to the Cahn�Hilliard system. We consider

ut=&2(=2 2u&PDuW(u)) in 0

�u
�&

=
�2u
�&

=0 on �0 (12)

u # G/RN

where =>0 is a small parameter. The specific assumptions on the domain
0 and the nonlinearity W are stated below.

(A1) 0 denotes a bounded domain in Rn, where n # [1, 2, 3].
Furthermore, we assume that either the boundary of 0 is of class C2, or
that 0 is a two- or three-dimensional rectangular domain, or that 0/R2

is an equilateral triangle.

(A2) Let W: RN � R be a smooth function.

Note that in addition to (A2), for the model to be physically realistic, the
nonlinearity W restricted to G has to satisfy further constraints. For
instance, an N-well potential like the standard example (3) would guarantee
N energetically preferred states for the material. However, since spinodal
decomposition is a local phenomenon near a constant solution u#u� # G,
we do not need this global property.

Similar to the binary case, spinodal decomposition only occurs in
a neighborhood of certain homogeneous equilibria u#u� , i.e., we need
an additional assumption. Let u� # G and let B=Bu� :=&PD2

uW(u� ) #
L(RN, RN ), with eigenvectors wk # e= and corresponding eigenvalues ;k as
introduced in Notation 1.1.

(A3) Choose and fix a total mass vector u� # G in the spinodal region,
i.e., assume that B=&PD2

u W(u� ) has a positive eigenvalue ;1>0.

In order to apply the abstract theory of Section 2 in ref. 14, we have to
rewrite (12) as an abstract evolution equation ut=Au+F(u). Rather than
considering the original equation (12) for u # G with mass constraint

878 Maier-Paape et al.



�0 u dx�|0|=u� (see (4)), we introduce the new variable w=u&u� # e=,
which satisfies the mass constraint �0 w dx=0. Transforming (12) into an
equation for w, and afterwards replacing w by u again, we arrive at

ut= &2(=2 2u&PDuW(u� +u)) in 0

�u
�&

=
�2u
�&

=0 on �0
(13)

u # e=/RN

|
0

u dx=0

This equation basically is (12), where the nonlinear term is replaced by
f (u� +u)=&PDuW(u� +u). Let f� : RN � RN be defined as

f� (u) := f (u� +u)&Du f (u� ) u& f (u� )= f (u� +u)&Bu& f (u� ) (14)

then in fact f� : e= � e= and f� (0)=Du f� (0)=0. Consider the Hilbert space

X={u # L2(0) : |
0

u dx=0, u # e= a.e. in 0= (15)

where L2(0) :=(L2(0))N. Similarly, we will use Hk(0) :=(H k(0))N in the
following. Finally, let

A=u :=&2(=22u+Bu) and F(u) := &2f� (u) (16)

Then the first equation in (13) is of the form

ut=A= u+F(u) (17)

The evolution equation (17) is of the same form as the one used in the
binary case considered in ref. 14. Thus, we can use the abstract theory
developed there to prove the dominance properties mentioned in the intro-
duction. For this we only have to verify hypotheses (H1) through (H3) in
ref. 14. This will be done in the following subsections. Basically, we have to
verify the following three claims.

(H1) The operator &A= is sectorial in the Hilbert space X.

(H2) There exists a decomposition X=X&&�X&�X+ �X++

into pairwise orthogonal subspaces, such that all subspaces are finite-
dimensional except X&&, and such that the linear semigroup corresponding
to ut=A=u satisfies several dichotomy estimates. See Lemma 2.6(b) below.
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(H3) The nonlinear mapping F: X: � X is C1 with F(0)=0 and
DF(0)=0. Furthermore, it satisfies a global Lipschitz condition with con-
stant LF , i.e., for all u, v # X: we have

_F(u)&F(v)_X�LF _u&v_X:

Here X: denotes the fractional power space corresponding to A= .

In the course of verifying hypotheses (H1) through (H3), we also calculate
several constants introduced in ref. 14, which in turn furnish an upper
bound on the Lipschitz constant LF . (Notice that since the nonlinearity in
our example (see (16)) does not satisfy a global Lipschitz condition, we
have to employ a standard cut-off technique.) This will eventually deter-
mine the size of the neighborhood on which our results are valid.

2.1. Spectral Properties

In the following lemma we collect several properties of the linear
operator A= which will be needed later on. These results are the obvious
generalization of Lemma 3.1 in ref. 14. We will again use Notation 1.1 for
the eigenvalues and eigenfunctions of &2.

Lemma 2.1. Let X be defined as in (15) and assume that (A1),
(A2), and (A3) hold. Then the operator A= : X � X defined by A= u=
&2(=2 2u+Bu) with domain

D(A=)={u # X & H4(0) :
�u
�&

(x)=
� 2u

�&
(x)=0, x # �0=

satisfies the following assertions.
The operator &A= is self-adjoint and sectorial. The spectrum of A= con-

sists of real eigenvalues *1, k, =�*2, k, =� } } } � &�, where k=1,..., N&1,
with corresponding eigenfunctions .1, k, = , .2, k, = ,.... The eigenvalues *i, k, =

are obtained from the numbers *� i, k, = introduced in (9) by ordering *� i, k, =

while keeping k fixed. The eigenfunctions .i, k, = are obtained from the
eigenfunctions .~ i, k, = :=�i } wk through this ordering process in the obvious
way, and they form an L2(0)-orthonormal basis of X. Moreover, the
largest eigenvalue *1, 1, = is of the order

*1, 1, =t*max
= :=

;2
1

4=2 , and *1, 1, =�*max
= (18)
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Furthermore, let }~ i, k, = denote the reordering of the eigenvalues of &2 such
that *i, k, ==}~ i, k, =(;k&=2}~ i, k, =). Note that for large i # N (depending on =)
and all k=1,..., N&1 both *� i, k, ==*i, k, = and }~ i, k, ==} i are satisfied.

The above lemma implies that A= generates an analytic semigroup
S=(t) on X. Furthermore, for every A= the fractional power space X1�2, ==
D((&A=+a=I )1�2) is defined. See the discussion in Subsection 2.1 following
(H1) in ref. 14. Although formally this fractional power space depends on =,
the next lemma shows that algebraically, i.e., as a vector space, we have
X1�2, ==H2

av(0), where

H2
av(0) :={u # H2(0) : |

0
u dx=0, u # e= a.e. in 0, and

�u
�&

=0 on �0=
Likewise, the topological structure of the fractional power space X 1�2, = will
turn out to be independent of =��even though the norms _ }_1�2, = are not.
This is due to the fact that they are equivalent to the standard H2(0)-norm
on H2

av(0), i.e., to the norm

_u_H2(0) :=� :
N

i=1

&ui&2
H 2(0)

Moreover, let

_u_=- ((u, u))=_u_L2(0) :=� :
N

i=1

&u i&2
L2(0)

With these definitions, we have the following result.

Lemma 2.2. Let both (A1) and (A3) be satisfied, and let _ }_1�2, =

denote the norm on X1�2, = defined by

_u_1�2, = :=_(&A=+a= I)1�2 u_ for all u # X1�2, =

where a==;2
1 �=2. Moreover, define a norm _ }_

*
on H2(0) by

_u_
*

=- ((u, u))
*

:=- _u_2+_2u_2 for all u # H2(0)

Then for every 0<=2�min[;1 , 2;2
1 , 2;2

1 �;2
N&1] we have

X1�2, ==H2
av(0) (19)
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and the norm _ }_1�2, = is equivalent to both _ }_H2(0) and _ }_
*

. More
precisely, there exists a (=-independent) constant C>0 depending only on
the domain 0 such that for all u # H2

av(0) the estimates

=

- 2
} _u_

*
�_u_1�2, =�

- 2 } ;1

=
} _u_

*
(20)

and

=

C } - 2
} _u_H2(0)�_u_1�2, =�

C } - 2 } ;1

=
} _u_H2(0)

are satisfied.

Proof. Similar to our reasoning in the proof of Lemma 3.2 in ref. 14
we find that _ }_

*
and _ }_H2(0) are equivalent, thus we only have to verify

(20). Also, functions u # X with L2(0)-Fourier coefficients !i, k, ==
(u, .i, k, =), i # N, 1�k�N&1, are contained in X1�2, = if and only if

_u_2
1�2, == :

N&1

k=1

:
�

i=1

(a=&* i, k, =) !2
i, k, =<� (21)

On the other hand, a function u # X is an element of H2
av(0) if and only if

_u_2
*= :

N&1

k=1

:
�

i=1

(1+}~ 2
i, k, =) !2

i, k, =<� (22)

Employing the crucial estimate of the proof of Lemma 3.2 in ref. 14 we
obtain the estimate

=2

2
} (1+s2)�=2s2&;1s+a=�

;2
1

=2 } (1+s2) for all s�0 and 0<=2�;1

The left-hand side and (9) then imply =2(1+}2
i )�2�a=&*� i, 1, =�a=&*� i, k, = ,

which proves the first inequality in (20) via the obvious reordering of (21)
and (22). In order to verify the second inequality in (20) it suffices to prove
that

=2}2
i &;k}i�

2 } ;2
1 } }2

i +;2
1

=2 for i # N and 1�k�N&1
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For ;k�0 this is a consequence of 0<=2�;1 , whereas for ;k<0 we apply
the inequalities &;k }i�|;N&1| } }i�;2

1}2
i �=2+;2

1 �=2 using the remaining
assumptions on =. Together with the above characterizations, the identity
(19) is now obvious. K

Since according to the above lemma the fractional power space X1�2, =

is independent of = algebraically, we omit the superscript = in the following
and simply write X1�2=H2

av(0). Furthermore, we identify (X1�2, _ }_1�2, =)
with the space (H2

av(0), _ }_
*

), because Lemma 2.2 also shows that the
topology of X1�2, = is independent of =.

2.2. Spectral Gaps and Exponential Dichotomy Estimates

The following lemma proves the existence of suitable spectral gaps in
the spectrum of A= . They will be used to define the decomposition of X
mentioned in (H2), and therefore eventually furnish the dichotomy
estimates (see Lemma 2.6(b)). The size of these gaps turns out to be
crucial, because it provides a restriction on the possible size of the global
Lipschitz constant of the nonlinearity in (H3).

Lemma 2.3. Assume that assumptions (A1) and (A3) are satisfied
and fix two constants c

*
<c*<1.

Then there exist positive constants =0 and d0 which depend only on
c
*

, c*, 0, N, and ;1 such that for arbitrary 0<=�=0 the following holds.
The linear operator A= has eigenvalues *

*
(=) and **(=) satisfying both

**(=)&*
*

(=)�d0 } =n&2 and

c
*

} *max
= �*

*
(=)<**(=)�c* } *max

=

Moreover, the whole interval (*
*

(=), **(=)) is part of the resolvent set of A= ,
and both the interval (c

*
} *max

= , *
*

(=)) and (**(=), c* } *max
= ) contains eigen-

values of the form *ik , k, = for all k satisfying

*max
=, k :=max[s(;k&=2s): s�0]�c* } *max

=

In particular, they always contain an eigenvalue of the form *i1 , 1, = .

Proof. Fix two constants c
*

<c
**

<c**<c*. Due to (8) we can
choose =0>0 small enough such that for all 0<=�=0 the following two
assertions hold.

v Both in the interval [c**, c*] } *max
= and in [c

*
, c

**
] } *max

= there is
at least one eigenvalue *ik , k, = of A= for every k with *max

=, k �c* } *max
= . Let
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***(=) denote the smallest of these eigenvalues in the first interval, and
*
**

(=) the largest one in the second interval.

v The number of eigenvalues of A= in the interval (c
**

, c**) } *max
=

is bounded above by N } C } =&n&1, where C depends only on c
*

, c*, 0,
and ;1 .

Using these facts the proof can be completed similar to the proof of
Lemma 3.3 in ref. 14. K

The above lemma makes it possible to control gaps in the spectrum of
A= as = � 0. This is used to establish assumption (H2). To this end, choose
constants

c
�
&&<c� &&<<0<<c

�
&<c� &<c

�
+<c� +<1 (23)

where typically the differences c� &&&c
�
&&, c� &&c

�
&, and c� +&c

�
+ are small.

Using these constants the following results follow immediately from
Lemma 2.3.

Corollary 2.4. Under the assumptions of Lemma 2.3 there exist
intervals

J� &&
= :=[â&&

= , b&&
= ]/[c

�
&&, c� &&] } *max

=

J &
= :=[a&

= , b&
= ]/[c

�
&, c� &] } *max

=

J +
= :=[a +

= , b +
= ]/[c

�
+, c� +] } *max

=

such that for sufficiently small =>0 the following holds.

(a) Each of the intervals J� &&
= , J &

= , J +
= is contained in the resolvent

set of A= .

(b) With a&&
= :=(â&&

= +b&&
= )�2 and J &&

= :=[a&&
= , b&&

= ]/J� &&
= /

[c
�
&&, c� &&] } *max

= , there exists an =-independent constant d>0 such that
the length of each of the intervals J &&

= , J &
= , and J +

= is at least d } =n&2. The
constant d depends only on 0, ;1 , N, and the constants in (23).

(c) The interval [c
�
&& } *max

= , a&&
= ) is not contained in the resolvent

set of A= . More precisely, this interval contains at least one eigenvalue of
A= of the form * ik , k, = for every 1�k�N&1.

Using this result, we can finally define the decomposition of X needed
for applying the abstract theory of Section 2 in ref. 14.
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Definition 2.5. Define the intervals I &&
= :=(&�, a&&

= ), I &
= :=

(b&&
= , a&

= ), I +
= :=(b&

= , a +
= ), and I ++

= :=(b +
= , *max

= ], and let X&&
= , X&

= , X +
= ,

and X ++
= denote the span of all eigenfunctions of the operator A= (see

Lemma 2.1) corresponding to eigenvalues in I&&
= , I &

= , I +
= , and I ++

= , respectively.

The restrictions of A= or of the induced analytic semigroup S=(t), t�0,
to each of the subspaces defined above will be indicated by the appropriate
superscript. With these definitions we can finally verify hypothesis (H2) for
the linearization of the Cahn�Hilliard system. As mentioned earlier, this is
done for the non-standard norm _ }_

*
on X1�2=H2

av(0).

Lemma 2.6. Assume that (A1) and (A3) hold. Let A= : X � X be
the operator defined in Lemma 2.1, let S=(t): X � X, t�0, denote the
analytic semigroup generated by A= , and let X1�2=H2

av(0) be the fractional
power space introduced in Subsection 2.1 with norm _ }_

*
. Moreover,

consider the constants and intervals defined in Corollary 2.4 and Defini-
tion 2.5. Then the following assertions are satisfied for every 0<=�=0 ,
where =0 depends only on the domain 0, ;1 , |;N&1|, N, and the constants
in (23).

(a) The spaces X&
= , X +

= , and X ++
= are finite-dimensional subspaces

of X1�2 with dimensions proportional to =&n, where n denotes the dimen-
sion of the domain 0. Additionally, X&&

= , X&
= , X +

= , and X ++
= are pairwise

orthogonal with respect to the L2(0)-scalar product (( } , } )), and their
restrictions to X1�2 are pairwise orthogonal with respect to (( } , } ))

*
.

(b) There exists a positive constant M&&
= so that for every

u++ # X ++
= , u+ # X +

= , u& # X&
= , u

*
&& # X&&

= & X1�2, and u&& # X&&
= the

estimates

_S ++
= (t) u++_

*
�eb =

+t } _u++_
*

for t�0,

_S +
= (t) u+_

*
�ea=

+t } _u+_
*

for t�0,

_S +
= (t) u+_

*
�eb=

&t } _u+_
*

for t�0,

_S&
= (t) u&_

*
�ea=

&t } _u&_
*

for t�0,

_S&
= (t) u&_

*
�eb=

&&t } _u&_
*

for t�0,

_S&&
= (t) u

*
&&_

*
�ea=

&&t } _u
*
&&_

*
for t�0,

_S&&
= (t) u&&_

*
�M&&

= } t&1�2 } ea=
&&t } _u&&_ for t>0

are satisfied. Moreover, M &&
= �C1 } =&(1+n�2) as = � 0, where C1>0

depends only on 0, ;1 , N, and the constants in (23).
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(c) There exists a constant M1�2, =�1 such that for all u # X&
= �X +

=

�X ++
= we have

_u_�_u_
*

�M1�2, = } _u_

as well as M1�2, = } =2 � C2 as = � 0, where C2>0 depends only on ;1 and
the constants in (23).

Proof. The assertions of part (a) follow immediately from (8),
Corollary 2.4, and Definition 2.5.

As for the proof of (b), let u # X be arbitrary, let .i, k, = denote the
eigenfunctions of A= according to Lemma 2.1, and let u=�N&1

k=1 ��
i=1 !i, k, =

.i, k, = denote the Fourier series representation of u in X, i.e., let !i, k, = :=
((u, .i, k, =)), where (( } , } )) denotes the standard L2(0)-scalar product. Then
we have an explicit spectral representation of the semigroup S=(t) given by

S=(t) u= :
N&1

k=1

:
�

i=1

e*i, k, = } t } !i, k, = } .i, k, = for t>0

and if u # X1�2, then (22) furnishes

_u_
*
2= :

N&1

k=1

:
�

i=1

(1+}~ 2
i, k, =) } !2

i, k, =<�

These two identities already imply the first six inequalities in part (b),
similar to the proof of Lemma 3.6 in ref. 14.

In order to prove the seventh inequality, let u&& # X&&
= be arbitrary.

If n1(k)�1 is chosen in such a way that *i, k, = for i�n1(k) and
1�k�N&1 denote all the eigenvalues of A= which are contained in I&&

= ,
then u&& has the Fourier series representation u&&=�N&1

k=1 ��
i=n1(k) !i, k, =

.i, k, = in X, and for arbitrary t>0 we actually have S&&
= (t) u&& # X1�2. Due

to the choice of the interval I&&
= one further obtains *i, k, =<0 for all

i�n1(k), and therefore }~ i, k, ==} i>;k �=2 for all i�n1(k). Thus,

&S&&
= (t) u&&&

*
2= :

N&1

k=1

:
�

i=n1(k)

(1+}2
i ) } e2*i, k, = } t } !2

i, k, =

Now it is easy to verify that for all t>0, i�n1(k), and *>*n1(k), k, = we have

(1+}2
i ) } e2*i, k, = } t�

1+}2
i

2e(*&* i, k, =)
} t&1 } e2* } t=

1+}2
i

2e(*&;k} i+=2}2
i )

} t&1 } e2* } t

see Lemma 2.1. To continue, define the function h(s)=(1+s2) }
(*&;s+=2s2)&1, where *=a&&

= <0, s # 4 :=[s>0 : *&;s+=2s2>0],
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and ;=;k for an arbitrary 1�k�N&1. Assume first that k is such that
;k�0. Then h is monotonically decreasing on 4, and this implies

C 2
i, k, = :=

1+}2
i

2e(*&;k}i+=2}2
i )

�
1+}2

n1(k)

2e(*&*n1(k), k, =)

�
1+}2

n1(1)

2e(a&&
= &â&&

= )
=: (M� &&

= )2

If ;k<0, then h switches exactly once from decreasing to increasing in 4,
and this yields

Ci, k, = �max[M� &&
= , =&1]=: M &&

=

Finally, using a calculation which was already employed in the proof of
Lemma 3.6(b) in ref. 14 and which uses the estimate *n1(1), 1, =�c

�
&& } ;2

1 �
(4=2) from Corollary 2.4(c), we obtain

M &&
= �=&(1+n�2) } max {=n�2, �=4+;2

1 } (1+- 1&c
�
&&)2�4

d =
where d>0 is defined in Corollary 2.4(b). This finally proves the asymp-
totic behavior of the constant M&&

= for = � 0.
The proof of part (c) follows the lines of the proof of Lemma 3.6(c)

in ref. 14 and is therefore omitted. K

According to the above lemma the linear part of the Cahn�Hilliard
equation (13) satisfies (with respect to the non-standard norm _ }_

*
)

hypothesis (H2), and trivially (H1), as well as (7) from Section 2 in ref. 14.
Moreover, the asymptotic behavior for = � 0 of certain spectral gaps in the
spectrum of A= , and of the constants M&&

= and M1�2, = have been obtained.
We close this subsection with the following remark.

Remark 2.7. With the results of Corollary 2.4 and Lemma 2.6
we can deduce the asymptotic behavior of certain constants introduced in
ref. 14 Section 2 for = � 0. Although the specific values of these constants
are different if compared to the application in ref. 14, Section 3, their
dependence on = is not. Hence, we obtain exactly the same asymptotics, i.e.,
C&&

= �C } =n and C+
= �C } =n&2 for = � 0. See Remark 3.7 in ref. 14.

Even though we did not formally introduce these constants, we want
to point out that their asymptotic behavior is used to prove that the
abstract theory of Section 2 in ref. 14 can be applied to A= and a nonlinear
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function F, whose Lipschitz constant satisfies 0�LF�C } =n. For more
details see ref. 14, Remark 2.11. All of the constants C above depend only
on 0, ;1 , N, and the constants in (23). K

2.3. Properties of the Nonlinearity

While in the last subsection we established the validity of hypotheses
(H1) and (H2) for the Cahn�Hilliard system, this short subsection is
devoted to the verification of hypothesis (H3). We will provide a global
Lipschitz constant LF for an appropriate modification of the nonlinearity
F defined in (16).

Assume that assumption (A1) is satisfied and let g: RN � RN denote a
smooth function with g(0)=0 and Dg(0)=0. Consider the nonlinear
operator G defined by G(u)(x) :=(&2g(u))(x). Then G is continuously dif-
ferentiable from H2

av(0) to the space L2(0) with derivative

DG(u) h=&2(Dg(u) h)=\&2 :
N

i=1

Dg ij (u) } hi+1� j�N
(24)

for u, h # H2
av(0). Moreover, G(0)=0 and DG(0)=0. Applying this obser-

vation to the function g= f� defined in (14) we see that F as defined in (16)
is continuously differentiable. However, it does not satisfy the strong global
Lipschitz condition of hypothesis (H3).

Fortunately, hypothesis (H3) is valid for some function F� : H2
av(0) �

L2(0) which coincides with F on a certain neighborhood of the origin. In
order to obtain a global Lipschitz constant LF� of the order =n (as required
by Remark 2.7), the size of this neighborhood has to be proportional to =n

with respect to the H2(0)-norm. This can be proved by applying the
estimates for _DG(u) h_ and N=1 from ref. 14, Section 3.3 to the identity
(24). This immediately furnishes the following result.

Corollary 2.8. The nonlinear operator F defined in (16) satisfies
(H3) with a Lipschitz constant LF of the order =n on an H2(0)-neighbor-
hood of 0 with size proportional to =n.

2.4. Spinodal Decomposition

In the previous subsections we established all properties of (12) which
are necessary to apply the abstract results of ref. 14, Section 2 to the Cahn�
Hilliard system��and this can be done exactly as in Subsection 3.4 of
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ref. 14. Moreover, since the asymptotic behavior of the involved constants
remains basically unchanged, we obtain exactly the same result, of course
after adopting the new notation (u� instead of +, X= instead of X= , Hav(0)
instead of Hav(0), and so on). Therefore, we refrain from presenting our
main theorem again in as detailed a form as in the binary case, and state
only an intuitive abbreviated version.

Suppose that three constants 0<r<<*<<R are given. We consider
initial conditions from the ball

Br(u� )=[v # u� +X&
= �X+

= �X++
= : _v&u� _

*
<r]/u� +H2

av(0)

and their evolution under the dynamics of (12). For initial conditions
v # Br(u� ) we consider corresponding solutions of (12) living in some inertial
manifold (see Section 3.4 in ref. 14) which is tangential to X&

= �X+
= �X++

=

at u� , and whose projected initial value is v. Let Mr denote the set of all
those initial conditions v # Br(u� ) whose corresponding solution of (12),
projected to u� +X&

= �X+
= �X++

= , either remains in the larger ball BR(u� )
for all time, or has distance greater than * from u� +X+

= �X++
= upon exit-

ing BR(u� ). See also Fig. 2. In other words, the initial conditions in Mr can-
not be considered as being dominated by the strongly unstable subspace
X+

= �X++
= .

Fig. 2. Situation in the main theorem.
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Our main theorem states that the volume (which is the canonical
Lebesgue volume of the finite-dimensional space X&

= �X+
= �X++

= ) of
these ``bad'' initial conditions compared to the volume of all initial condi-
tions in Br(u� ) is arbitrarily small, provided the constants 0<r<<*<<R
are chosen proportional to =n as = � 0.

Theorem 2.9. We consider solutions of the Cahn�Hilliard system
(12) and assume that hypotheses (A1), (A2), and (A3) are satisfied. Then
there exists a positive constant =0 which depends only on 0, N, ;1 , |;N&1|,
and the constants in (23), such that for arbitrary 0<=�=0 the following
holds.

For every 0<p<<1 there exist constants 0<r<<*<<R which
depend only on N, ;1 , 0, and the constants in (23) (r depends additionally
on p) and which are all proportional to =n as = � 0, such that

vol(Mr)
vol(Br(u� ))

�p (25)

Proof. One only has to apply the abstract theory of Section 2 in ref. 14.
Hypotheses (H1) through (H3) have been established in Subsections 2.1
through 2.3, and the necessary constants have been calculated, furnishing
the ball with size proportional to =n on which the result is valid. K

Remark 2.10. An inspection of the abstract theory in ref. 14, Sec-
tion 2 shows that the following more general result is true. In Theorem 2.9,
choose an =-dependent constant *>0 which is proportional to =k* as = � 0,
for some k*�n, i.e., the constant * depends polynomially on =. Then for
every p as in the theorem, there exists a radius R which is proportional to =n,
and a radius r which depends polynomially on =, such that the estimate
(25) of Theorem 2.9 remains valid. In other words, if a solution of (12)
starts closer to the homogeneous equilibrium u� , then it will exit closer to
the dominating subspace. This result will be needed in order to apply the
results of Sander and Wanner(18) to Cahn�Hilliard systems. K

3. A CASE STUDY FOR TERNARY ALLOYS

3.1. Preliminary Considerations

In this section we describe the implications of our main Theorem 2.9
to ternary alloys. In particular, we consider the Cahn�Hilliard system (6)
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with the nonlinearity f defined by (5) for the specific free energy W given
in (3). It can readily be verified that in this situation we have

f (u1 , u2 , u3)=
1
3

} \_ } (2u1&u2&u3)+ln
u2u3

u2
1

,

_ } (2u2&u3&u1)+ln
u3u1

u2
2

,

_ } (2u3&u1&u2)+ln
u1u2

u2
3 +

If u� =(u� 1 , u� 2 , u� 3) denotes any point in the interior of the Gibbs triangle G,
then the linearization of (6) at u� is given by (7), with

2_&2�u� 1 &_+1�u� 2 &_+1�u� 3

B=
1
3

} \&_+1�u� 1 2_&2�u� 2 &_+1�u� 3+ (26)

&_+1�u� 1 &_+1�u� 2 2_&2�u� 3

Furthermore, the characteristic polynomial p(*)=det(B&*I ) of the matrix
B is given by p(*)=&* } (*2+q1 *+q0), where

q0=_2+
1&2_(u� 1u� 2+u� 2u� 3+u� 3u� 1)

3u� 1 u� 2 u� 3

q1=&2_+
2(u� 1u� 2+u� 2u� 3+u� 3 u� 1)

3u� 1 u� 2u� 3

Thus, if we let

;*=\ 1
u� 1

&
1

u� 2+
2

+\ 1
u� 2

&
1

u� 3 +
2

+\ 1
u� 3

&
1

u� 1+
2

(27)

then the eigenvalues ;1�;2 of B| e= are given by

;1=_&
1
3

} \ 1
u� 1

+
1

u� 2

+
1

u� 3 ++
- ;*

3 - 2
(28)

;2=_&
1
3

} \ 1
u� 1

+
1

u� 2

+
1

u� 3 +&
- ;*

3 - 2
(29)

In the following two subsections we will first discuss the shape of the
spinodal region depending on the parameter _, and then address the
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specific forms of the dominating subspaces for initial concentrations con-
tained on the line (u� 1 , u� 2 , u� 3)=({, {, 1&2{), for 0<{<1�2. We also relate
our results to recent numerical simulations of Eyre.(7, 8)

3.2. Description of the Spinodal Region

As we mentioned in the introduction, the spinodal region is the set of
all unstable homogeneous initial conditions u� in the Gibbs triangle G.
Equivalently, this is the set of all u� # G for which the matrix B defined in
(26) has at least one positive eigenvalue, i.e., for which we have ;1>0 (see
(28)). Depending on the positive parameter _, we can qualitatively dis-
tinguish the following four cases:

v For 0<_<2, both eigenvalues ;1 and ;2 are negative, the spinodal
region is empty, and all homogeneous equilibria in the Gibbs triangle are
stable.

v For 2<_<8�3, the spinodal region consists of three components,
one along each of the sides of the Gibbs triangle. In those regions, we have
;1>0�;2 , as shown in Fig. 3(a).

v For 8�3<_<3, the spinodal region is connected. Its complement
consists of four components, one at each of the corners of the Gibbs tri-
angle, and one in the center. Throughout the spinodal region we have
;1>0�;2 . This is depicted in Fig. 3(b).

v For _>3, the spinodal region is again connected, but this time it
contains everything except three small regions, one at each corner of the
Gibbs triangle. In the center of the spinodal region both eigenvalues are
positive, otherwise we have ;1>0�;2 . See Fig. 3(c).

The transitional forms of the spinodal region at the values 2, 8�3, and 3,
can be obtained easily and will therefore not be discussed in more detail.

Fig. 3. Qualitative form of the spinodal region for various values of _>2. Dark shading
corresponds to ;1�;2>0, lighter shading to ;1>0�;2 .
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The above discussion shows that only for _>2 the spinodal region is
non-empty. For every _ # (2, 3) we have ;1>0 and ;2�0 throughout the
spinodal region. Thus, for these values of _, every homogeneous equi-
librium in the spinodal region will satisfy the assumptions of Theorem 1.3
from the introduction. In other words, for _ # (2, 3) we always observe a
pseudo-binary phase separation, i.e., there exists a strong mutual coupling
between the components in the alloy.

The situation is different for _>3. Using (27), (28), and (29) one
can easily see that the eigenvalues ;1 and ;2 are equal if and only if
(u� 1 , u� 2 , u� 3)=(1�3, 1�3, 1�3), and for _>3 they are also positive. Due to the
discussion at the end of the introduction this implies that in a small
neighborhood around the point (1�3, 1�3, 1�3) in the Gibbs triangle, the
assertions of Theorem 1.2 hold with ;1r;2 . This is indicated by a small
black dot in the center of Fig. 3(c). Outside of this neighborhood, Theo-
rem 1.3 applies again, and we observe pseudo-binary decomposition.

3.3. Dominating Subspaces Along a One-Parameter Curve

In this subsection we want to describe the actual structure of the
dominating subspaces Y+

= introduced in (10), if the initial condition is of
the form

u� =(u� 1 , u� 2 , u� 3)=({, {, 1&2{), for 0<{<1�2

One can easily check that in this situation the matrix B defined in (26) has
the two nontrivial eigenvalues

;� 1=_&
1
{

and ;� 2=_&
1

3{(1&2{)

with corresponding normalized eigenvectors w~ 1 # e= and w~ 2 # e= given by

&1 1

w~ 1=
1

- 2
} \ 1 + and w~ 2=

1

- 6
} \ 1 +0 &2

See also Fig. 4, where ;� 1 (solid line) and ;� 2 (dashed line) are shown for
_=4. Thus we have ;1=max[;� 1 , ;� 2] and ;2=min[;� 1 , ;� 2], which implies

;1=_&
1

3{(1&2{)
and ;2=_&

1
{

for 0<{�
1
3

,

;1=_&
1
{

and ;2=_&
1

3{(1&2{)
for

1
3

�{<
1
2
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Fig. 4. Eigenvalues of B as functions of { for _=4. The solid line shows ;� 1 , the dashed line ;� 2 .

The corresponding eigenvectors are w1=w~ 2 and w2=w~ 1 for 0<{�1�3, as
well as w1=w~ 1 and w2=w~ 2 for 1�3�{<1�2.

These considerations allow the following descriptions of the dominat-
ing subspaces Y+

= defined in (10).

(i) Assume first that u� =({, {, 1&2{) is contained in the spinodal
region and that 0<{�1�3&' for some small '>0. Then the dominating
subspace is of the form

Y+
= =w~ 2 } Y+

=

where Y +
= denotes the dominating subspace for the binary Cahn�Hilliard

model defined in (11). This situation occurs at the two uppermost points
in Fig. 5(b) and (c). During the initial spinodal decomposition process
most solutions originating near u� lead to functions which are close to
u� +Y+

= (see our main result Theorem 2.9). Thus, the range of these func-
tions is concentrated along the vertical line segments indicated in Fig. 5(b)
and (c), which are parallel to w~ 2 .

(ii) If we have u� =({, {, 1&2{) in the spinodal region and 1�3+'�
{<1�2 for some small '>0, then the dominating subspace is of the form

Y+
= =w~ 1 } Y +

=

This situation occurs at the three lowermost points in Fig. 5(a), (b), and
(c). Now the range of most solutions originating near u� is concentrated
along the horizontal line segments shown in Fig. 5(a), (b), and (c), which
are parallel to the eigenvector w~ 1 .
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Fig. 5. Directions of the dominating subspaces Y+
= .

(iii) Finally, if u� =({, {, 1&2{) is such that |{&1�3|<' for some
small '>0, then the dominating subspace is of the form

Y+
= =w~ 1 } Y +

= �w~ 2 } Y +
=

This situation occurs only at those points in G which are close to the mid-
dle of Fig. 5(c). Unlike in the previous two cases, the range of functions
close to u� +Y+

= is no longer restricted to a specific line segment. Any direc-
tion in the Gibbs triangle is possible, there is no automatic coupling
between the components.

The three cases described above can be illustrated using the numerical
results of Eyre.(7, 8) Case (i) corresponds to ref. 8, Fig. 3; (ii) is depicted
in ref. 7, Fig. 9 and Figs. 2 and 4 of ref. 8; and (iii) can be seen in ref. 7,
Fig. 8.
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